
Effective C++

Based on the Book “Effective C++” (third
edition) By Scott Meyers

Presentation By: Brian Braatz

ITEM#1

“View C++ as a federation of languages”

C

Object Orientated C

C++Template Meta-Programming

STL

Rules for Effective C++ vary depending on
which language you are using

ITEM#2

“Prefer const, enum and inlines to #defines”

(might also be called prefer the compiler to the
preprocessor)

Example

Macro:

#define ASPECT_RATIO 1.6533

How will most debuggers treat usage of a macro?

Poorly! Error msg might refer to 1.6533

How can we solve the debugger problem?

Solution: Replace with a constant

const double AspectRatio = 1.6533

Does this work with “strings”?....

Const With Pointers

const char * const CompanyName = "Acme";

We have to write const twice

(WHY twice will be covered in Item 3)

How could we improve above?

String objects are generally preferable:

const std::string CompanyName = "Acme";

Working with Const
Pointers

To limit the scope

Must make it a member

To ensure there is only one copy

Must make it static

Compile Time Constants

Declaration or definition?

This is a declaration - not a definition

usually C++ requires a definition

except with class specific integral constants

Is this really legal C++?

Yes. As long as you don't take an address, you
can use and declare without providing a
definition

class info
{
const double AspectRatio = 1.6533;
};

Compile Time Const

What if we need to take the address of a
constant?

We then must provide a definition

const double info::AspectRatio;

This is only allowed for constant integral types

Are there any other methods of creating a
compile time value?

Enum

Enum is more portable to older compilers

Enum provides similar functionality to const values

Is enum more limiting than const?

We cannot take the address of AspectRatio.

This might be your intention

class info
{
enum { AspectRatio = 1.6533 };
};

Enum Notes

The enum as a constant is a good technique to
be aware of

Many boost libs uses this for setting results of
compile time expressions (BB)

struct AlwaysTrue
{

enum {VALUE = mpl::true_ };
};

Things to remember:

For simple constants- prefer const objects or
enums to #defines

For function like macros prefer inline functions
to defines

ITEM #3

“Use const whenever possible”

const communicates to both programmers and
compilers the usage model of an object

Const is Versatile

Const can be used:

Outside of classes

constants can be at global or namespace
scope (see item2)

For objects declared static at file, function, or
block scope

inside classes use it for both static and non-
static data members

Const with Pointers

With pointers const can

Specify pointer is const

Specify data pointed to is const

both

neither

Const Pointer Example

char name[]="Billy";

char * p = name; // non-const ptr / non-const data

const char * p = name; // non-const ptr / const data

char * const p = name; // const ptr / non-const data

const char * const p = name; // const ptr / const data

How to think about
const:

const on the left of asterisk
What is pointed to is const

const on the right
pointer is const

char name[]="Billy";

char * p = name; // non-const ptr / non-const data

const char * p = name; // non-const ptr / const data

char * const p = name; // const ptr / non-const data

const char * const p = name; // const ptr / const data

Const Left or Right of
Type

With the type, const may be on the left of or right

but always same meaning

both of these are equivalent

void f(const Foo * fp);

void f(Foo const * fp);

STL iterators
Modeled after pointers
Iterators acts similar to a pointer with const

const std::vector<int>::iterator it =v.begin(); // like T* const
 // const ptr / non-const data

*it = 77; // ok changes data pointed to
++it; // Error iter is const!

std::vector<int>::const_iterator cit = // like a const T *
v.begin(); // non-const ptr / const data

*cit = 88; // Error! object pointed to is const!
++cit; // ok we can incrememnt the iterator

const with functions

const can be applied to :

return value

individual arguments

to the function as a whole

(for member functions)

Returning const:
Having a function return a constant can reduce
client errors
struct Rational {};
const Rational operator*(const Rational& lrhs, const Rational& rrhs);

Rational a,b,c;

(a*b) = c; // invoking operator= on the result of (a*b) !!!!

Rational a,b,c;
// ...
if ((a*b) = c) // oops! forgot to use "=="

Why make the return const?

to stop this:

Would anyone intentionally do this?

probably not... but typos happen

Consider:

Const member functions
What are they for?

To identify which members maybe invoked on
const objects

2 Important Reasons to use const member
functions

Make the interface of a class easier to
understand

Make it possible to work with const objects

Const Performance

Const is a critical aspect of efficient code

Item 20 explains that one of the best ways to
aid efficiency is to pass by ref to const

Constness affects overloading
class my_string
{
public:
 //

 // for const objects
 const char & operator[](std::size_t pos) const
 { return sText[pos];
 }
 // for non-const objects
 char & operator[](std::size_t pos)
 {
 return sText[pos];
 }
private:
 string sText;
};

/* my_string can be used like this: */

my_string s1("Billy");
cout << s1[0]; // calls non-const operator

const my_string s2("Bob");
cout << s2[0]; // calls const operator

Two forms of const-
bitwise and logical

Bitwise

if a member is const, and it doesn't modify
members

i.e. none of the "bits" inside the object

Logical!

bitwise is easy for compiler to detect

While logical is more of a technique

Bitwise const can be
counterintuitive

Passes the bitwise test. but the member can be
used to modify the object

Is this legal C++?...

class my_string
{
public:
 //

 // BAD- returning char & from const function
 char & operator[](std::size_t pos) const
 {
 return sText[pos];
 }
private:
 char * sText;
};

Bitwise const can be
counterintuitive

This is LEGAL due to bitwise const rules in C++!
class my_string
{
public:
 //

 // BAD- returning char & from const function
 char & operator[](std::size_t pos) const
 {
 return sText[pos];
 }
private:
 char * sText;
};

const my_string s("ho"); // CONSTANT object
char * n ;
char * p = &s[0]; // note p is NOT const
*p ='Y';

cout << s; // prints "Yo"

Logical Constness

Philosophy

A const member function might modify some
of the bits in the object on which it's
invoked

But only in ways clients cannot detect

Logical Constness
Lets say we wish to track how many times the
operator[] was called with an internal variable;

class my_string
{
public:
//

 const char & operator[](std::size_t pos) const
 {
 num_calls++; // increment member variable
 return sText[pos];
 }
private:
 mutable int num_calls; // mutable member
};

Mutable lets the function be "const", but still modify
specific member variables

Without the mutable keyword- the above will not
compile as it fails bitwise constness

Avoiding Duplication
We now have better methods for expressing
constness
HOWEVER, if we need additional code in our
operators, our techniques leave us with code
bloat.
Do we really need to have a const and non-
const version of our operators have duplicate
code?
NO!
Cast away const!
?
Generally casting is a bad thing
In this case it is quite useful...

Casting Away Const

Notice what this does:

static_cast "adds const" to this

const_cast "removes const" to this

(without the const in the static_cast<> we have
infinite recursion)

class my_string
{
public:
//

 const char & operator[](std::size_t pos) const
 {
 // .. large body of code here
 // ... logging \ tracing \ calculate pi etc ..
 return sText[pos];
 }
 char & operator[](std::size_t pos)
 {
 return const_cast<char&> // cast away const
 (
 // call our const operator[]
 static_cast<const my_string&>(*this)[pos]
);
 }
};

Going the other way

What about having the const version call the
non-const version?

Not a good idea

Not as safe as it is more likely the code will
modify the underlying object in ways not
intended

Things to remember:
Declaring something const helps compilers
detect usage errors

const can be applied to

Objects at any scope

Function parameters

Return types

Member functions as a whole

Compilers enforce bitwise constness

You should program using conceptual constness

When const and non-const members have
identical implementations

Code duplication can be avoided by having the
non-const version call the const version!

ITEM#4

“Make sure the objects are initialized before
they're used.”

Example
int x;

Initialized or not?

Sometimes yes, sometimes no.

Depends on what dialect of C++ you are using

C - initialization not guaranteed to take place

Non-C parts of C++ - things sometimes change

char s[100]; - not initialized

vector<char>; IS initialized

Rules for when this happens is complicated

What to do?

Unless you are hyper sensitive about
performance in a critical piece of code, always
initialize

Make sure ctors always initialize everything in
the object

Use member initialization lists instead of code
in the ctor

Example

struct Address
{
 string fname;
 string lname;

 Address(const string & _fname, const string & _lname)
 : fname(_fname), lname(_lname) // initialize HERE
 {
 // NOT here
 }
};

Initialization vs
assignment

Using the initialization list means fname and
lname will be initialized with their values;

If the code was placed in the body of the ctor,

fname and lname would be initialized, and
THEN have values assigned to them

If there are many ctors, this might be
unwieldy, but in general it is a good practice

Order of initialization of of
non-local static objects

"The relative order of initialization of non-local
static objects defined in different translation
units is undefined"

if a module level static in one cpp references a
module level static in another cpp,

The target is NOT guaranteed to be
initialized

Huh?...

Example:

///////////
// one.cpp
statc int X = 22;

///////////
// two.cpp
static int Y = X; // what is the value of X? Undefined!

Solution:
Move static access into static functions

// one.cpp

static int & get_x()
{

statc int X = 22;
}

// two.cpp

static int Y = get_X(); // OK!

C++ Guarantees that a local static will be
called on initial use, problem solved.

Things to remember:

Manually initialize objects of built in types-

C++ only "sometimes' initializes them by itself

In a ctor, prefer use of member initialization
lists to assignment in the body

list data members in the same order as defined

Avoid initialization order problems across
translation units by replacing non-local static

ITEM#5

Know what functions C++ silently writes and
calls

Example

C++ will generate these extra functions when
you use them.

// THIS:
class Empty {};

// is the same as:
class Empty
{
public:
 Empty() {...}
 Empty(const Empty& x) {...}
 ~Empty() {...}
 Empty & operator=(const Empty &x) {...}
};

What is in the generated members?

Default ctor & dtor

Initialization & destruction of non-static
member variables

Base class invocation of destruction and
construction

Note: generated dtor is non-virtual- unless
the base class declares a virtual dtor

Copy ctor & copy assignment operator!

Copy each non-static data member of the
source over to the target object! !

Empty e1; // default ctor
Empty e2(e1); // copy ctor
e1 = e2; // // copy assignment operator

Example

Points of Note:
Since a ctor was defined, compilers wont
generate a default ctor
No copy ctor or assignment ctor

compiler will generate if needed
if T == int (integral type), compiler will
generate a bitwise copy for ObjectValue
if T == string, Compiler will generate a call
to the copy or assignment operator in string

template <typename T>
class NamedObject
{
public:
NamedObject(const char * name, const T& value);
NamedObject(const string& name, const T& value);

//...
private:
string nameValue;
T ObjectValue;
};

Compiler Generated Functions-
References

Will this compile?

Problem: C++ doesn't have a
way to make a reference refer
to a different object.

The "generated" assignment
code is invalid.

Example will not compile

Problem: The same goes for
const T ObjectValue;

Can’t modify const members

template <typename T>
class NamedObject
{
public:
NamedObject(const char * name, const T& value);
NamedObject(const string& name, const T& value);

//...
private:
string & nameValue;
const T ObjectValue;
};

string dog1("percy");
string dog2("skip");

NamedObject p(dog1, 1);
NamedObject s(dog2, 37);

p = s; // what happens to data members in p?

Solution

Solution:

You must define the assignment operators
yourself

Additionally:

Compilers reject implicit copy assignment
operators in derived classes that inherit
from base classes declaring the copy
assignment private

Things to Remember:

Compilers may implicitly generate a class's
default constructor, copy constructor, copy
assignment operator and destructor

ITEM#6

“Explicitly disallow the use of compiler-
generated functions you don’t want.”

Example

Uncopyable has the following qualities
Cannot be created directly
Cannot be destroyed directly

(must be derived from)
Cannot be copied (even by derived)

There still is a hole however.... What is it?
Friend classes can break these rules.

class UnCopyable
{
protected:
 UnCopyable(); // allow construction & destruction
 ~UnCopyable(); // of derived objects

private:
 UnCopyable(const UnCopyable &); // prevent copying
 UnCopyable & operator=(const UnCopyable &);
};

Solution:

Declare the functions but do not provide
implementation

if the rules are broken- the users code wont
link

Disadvantage:

Error is put off until link time

Move Error to Compile Time
How do we get the error moved to compile
time?

Put the private \ protected members into a
base class

class my_uncopyable : private UnCopyable
{
// ...
};

This works nicely because compiler will try to generate
a copy ctor and copy assignment operator.
If anyone tries to copy my_uncopyable, it will fail at
compile time.
Note:
This is the functionality behind boost::noncopyable

Move Error to Compile
Time

Also:

Compilers will sometimes generate warning
messages about private\protected operators.

These should be disabled with a #pragma. In
this case, we specifically intended to do what
the compiler is warning us about.! !

Things to remember:

To disallow functionality automatically provided
by compilers, declare the corresponding
member functions private and give no
implementations. Using a base class like
uncopyable is one way to do this.

Boost provides such a class

ITEM#7

“Declare destructors virtual in polymorphic
base classes.”

Example

This leads to a partially destroyed object.

C++ prefers performance over safety, hence
there is no check runtime check to make sure
we have the "correct" object to delete.

struct base
{
 base();
 ~base();
};

struct derived : public base
{
 // ...
 char derived_data[1024];
};

base * b = new derived;

//

delete b; // memory leak!!
 //generated code does not know about derived_data member

Example w/ virtual dtor

While this might seem like a silver bullet to
solve the problem it is not.

This technique should only be used when a
class is intended to be a base class. Why?

Additional pointer in memory over head

Indirection (vptr) incurred in destruction

struct base
{

base();
virtual ~base() {};

};

struct derived : public base
{

// ...
char derived_data[1024];

};

base * b = new derived;

//

delete b; //NO memory leak - calls virtual dtor in base

STL as bases classes?
Where this item can really crop up is the fairly
common (bad) technique of deriving from std::
classes.

class SpecialString : public std::string
{
 // ...
};

// SpecialString **MIGHT** look ok, but consider:

SpecialString * pss = new SpecialString;
std::string *ps;
...
ps = pss;
...
delete ps; // SpecialString's resources will be leaked!

This problem applies to any class lacking a
virtual destructor.

Things to Remember:

Polymorphic base classes should declare virtual
destructors. If a class has any virtual
functions, it should have a virtual destructor.

Classes not designed to be base classes or not
designed to be used polymorphicly should not
declare virtual destructors.

ITEM#8

“Prevent exceptions from leaving destructors.”

C++ does not prohibit destructors from emitting
exceptions, but it certainly discourages the
practice.

Problem Code:
Suppose the vector has 10 Widgets in
it.

During the deletion of the first one,
an exception is thrown

The other nine Widgets will have to
be destroyed, so v should invoke
their destructors

Suppose during those calls a second
Widget dtor throws an exception.

Now there are two simultaneous
active exceptions

Program execution either terminates
or is undefined!

C++ does NOT like destructors that
emit exceptions

struct Widget
{
public:
// ...
 ~widget(){...}
};
void dosomething()
{
 std::vector<Widget> v;
 ...
}

What to do?
What if you have a class of database
connections?

The dtor, SHOULD close the db handle if it is
open, right?

If the close call throws, we have problems....

Two primary ways to handle this:

Catch the exception in the dtor and
terminate the program

Swallow the exception- maybe make a log
entry

Neither of these are especially appealing.

Suggested approach:
struct DbConnection
{
 // ...
 void close()
 {
 db.close();
 closed = true;
 }
 ~dbconn()
 {
 if (!closed)
 {
 try
 {
 db.close();
 }
 catch(...)
 {
 // LOG entry!
 }
 }
 }
};

Things to Remember:

Destructors should never emit exceptions. If
functions called in a destructor may throw, the
destructor should catch any exceptions, then
swallow them or terminate the program.

If class clients need to be able to react to
exceptions thrown during an operation, the
class should provide a regular (non destructor)
function that performs the operation.

ITEM#9

Never call virtual functions during construction
or destruction.

Example
When d is constructed, the base
class is initialized before the derived
class
During this initialization, the base
class attempts to call a virtual
function
However, "derived" hasn't been
initialized yet

The call exhibits undefined
behavior!!!!!!!
If log() were not pure virtual, it
would call base::log()

Destruction works in the opposite
manner
Derived classes are deallocated
before base classes.

struct base
{
 virtual void log() =0;
 base()
 {
 log(); // Call virtual function
 };
};

struct derived : base
{
 derived() : base() {};

 virtual void log()
 {
 // send information to the log file
 }
};

derived d;

Solution:

Init

have an init() member which is virtual

track whether the object has been
initialized

error on methods where object initialization
is a precondition

Things to Remember:

Don’t' call virtual functions during construction
or destruction, because such calls will never go
to a more derived class than of the currently
executing constructor or destructor.

ITEM#10

“Have assignment operators return a reference
to *this.”

Example

struct myclass
{
 // ...
 myclass & operator=(const Widget &)
 {
 //...
 return *this; // return ref to this
 }
};

// Allows chaining
myclass a,b,c;
a = b = c;

// This is standard practice in STL
//and for built in types.

Things to Remember:

Have assignment operators return a reference
to *this.

Allows chaining

End Part 1

Thank you!

ITEM#11

Handle assignment to self in operator=.

Example
Looks good, except:struct myclass

{
 // ...

 string * pstr;
 myclass & operator=(const myclass & mc)
 {
 delete pstr;
 pstr = new string(*(mc.pstr));
 return *this;
 }
};

myclass mclass;
myclass & mclass2 = mclass;
// ...
mclass = mclass2; // Self assginment!

pstr in the mclass
object is now holding
a pointer to a deleted
object.

This problem can be
averted by checking
for self assignment...

Self Assignment

Done?

No! Why?

The code is not exception safe.

If the constructor in string throws, pstr is left
pointing to a deleted object

Can we fix this?????

struct myclass
{
// ...

 string * pstr;
 myclass & operator=(const myclass & mc)
 {
 if (this == &ms) return *this; // check identity

 delete pstr;
 pstr = new string(*(mc.pstr));
 return *this;
 }
};

Better
We now have a check for self
assignment

and we are exception safe!

How are we exception safe?

If "new string" throws, pstr is
still pointing to a valid object.

Item #29 explores this topic
in further detail

struct myclass
{
 // ...
 string * pstr;
 myclass & operator=(const myclass & mc)
 {
 if (this == &ms) return *this;

 // Save original
 string * orig_pstr = pstr;

 // Make new
 pstr = new string(*(mc.pstr));

 // Delete original
 delete orig_pstr;

 return *this;
 }
};

Things to Remember

Make sure operator= is well behaved when an
object is assigned to itself. Techniques include
comparing addresses of source and target
objects, careful statement ordering, and copy
and swap.

Make sure that any function operating on more
than one object behaves correctly if two or
more of the objects are the same.

ITEM#12

Copy all parts of an object.

More
If you write a copy ctor or an operator=,
remember to take full responsibility for copying
all parts of the object.

Remember to copy your data members and
refer to your base class(es) appropriate copying
members.

Both for copy and assignment.

It is a good practice to have a private copy
function and have both copy ctor and operator=
() call that one, in all but the most trivial
cases.

Things to Remember:

Copying functions should be sure to copy all of
an objects class members and all of it's base
class parts.

Don't try to implement one of the copying
functions in terms of another. Instead put
common functionality in a third function that
both call.

ITEM#13

Use objects to manage resources.

Managing Resources
Instead of:
string * p = new string("data");
// ...
delete p;
Use an object to manage the resources.
options:

std::auto_ptr
tr1::shared_ptr or any of the boost smart
pointers

ANY RAII object is better than doing it by
hand for most situations

Things to Remember:

To prevent resource leaks, use RAII objects
that acquire resources in their ctors and
release them in their dtors.

Two commonly useful RAII classes are
tr1::shared_ptr and auto_ptr, tr1::shared_ptr is
usually the better choice because it's behavior
when copied is intuitive. Copying an auto_ptr
sets it to null

ITEM#14

Think carefully about copying behavior in
resource managing classes.

Resource Managing Classes -
Copying

Designers of RAII classes have many tough
decisions on copying:

Do I Prohibit it?

Do I Nullify the original? (transfer ownership)

Do I reference count and share the handle?

Do I copy the underlying resource?

Decisions made by the designer(s) of a RAII
style class should be understood before using
any such class.

Auto_ptr Copying
std::auto_ptr

Is it reference counted?

NO!

When copied, original is set to null

What use is it?

Only useful in small scopes to make sure you
"don't forget" to free it

That being said, std::auto_ptr is faster than
boost \ tr1::shared_ptr

Boost \ Tr1 Shared_ptr

Holds onto ONE object pointer

Reference counts on copy

When last copy is destroyed, frees the dynamic
object

Things to Remember:

Copying an RAII object entails copying the
resources it manages, so the copying behavior
of the resource determines the copying
behavior of the RAII object.

Common RAII classes copying behaviors are
disallowing copying and performing reference
counting, but other behaviors are possible.

ITEM#15

“Provide access to raw resources in resource
managing classes.”

“Provide access to raw
resources in resource
managing classes.”

RAII wrappers are great at hiding resource management
mechanisms

But, should we expose underlying managed object?

Yes, occasionally one needs access to the underlying
object to call a API or C function, or for just plain
debugging.

This can either be done explicitly or implicitly.

Examples:

operator char *(); // allows object to be passed
as a char *

const char * c_str(); // returns the char*
inside this object

Things to Remember:

APIs often require access to raw resources, so
each RAII class should offer a way to get at
the resource it manages.

Access may be explicit conversion or implicit
conversion. In general, explicit conversion is
safer, but implicit is more convenient for the
users.

ITEM#16

Use the same form in corresponding uses of
new and delete.

“Use the same form in
corresponding uses of new

and delete.”

Better:

string * s = new string[100];
// ...
delete s; // OOPS! - only deletes one object

string * s = new string[100];
// ...
delete [] s; // now deletes the array

Things to Remember:

If you use [] in a new expression you must use
[] in the corresponding delete expression. If you
don't use [] in a new expression, you mustn't
use [] in the corresponding delete expression.

ITEM#17

Store newed objects in smart pointers in stand
alone statements.

“Store newed objects in
smart pointers in stand alone

statements.”
What is wrong with this code?

int get_priority();
void process (boost::shared_ptr<string> sp, int iPriority);

void foo()
{
process(boost::shared_ptr<string>(new string("data")), get_priority());
}

Order of argument expression validation between
arguments in C++ is undefined.

Arg Expression Evaluation
Order

Order of code MIGHT be:

new string("data")

shared_ptr constructor

call get_priority()

int get_priority();
void process (boost::shared_ptr<string> sp, int iPriority);

void foo()
{
process(boost::shared_ptr<string>(new string("data")), get_priority());
}

OR it might be

new string("data")

call get_priority()

shared_ptr constructor

IF get_priority() throws an exception, we have leaked
memory!

What is the Solution?

int get_priority();
void process (boost::shared_ptr<string> sp, int iPriority);

void foo()
{
boost::shared_ptr<string> sp(new string("data"));
process(sp, get_priority());
}

Things to Remember:

Store newed objects in smart pointers in
standalone statements. Failure to do this can
lead to subtle resource leaks when exceptions
are thrown.

ITEM#18

Make interfaces easy to use correctly and hard
to use incorrectly.

Consider a Date class:

Do you see any problems with design?

It is easy to use incorrectly.

Think for a moment on how YOU would fix it

struct Date
{
Date(int month, int day, int year);
};

Better Date Class

Smart use of the type system can make usage
less error prone

Could it be even better?

struct Month
{
 explicit Month(int m)
 : val(m) {}

private:
 int val;
};

struct Date
{
Date(const Month & m, const Day & d, const Year & y);
};
// ... do same for day & year

Even Better Date Class?

Hmm..

Only 12 possible values for month

Make month an enum?

This would work, but enums are not very
type safe

enums can be accepted like ints, so initial
problem persists

Yet Another Date Class

Date is now
strongly typed

Interface is

Safer

Consistent

What makes this
version of Date
less likely to be
used incorrectly?

struct Month
{
explicit Month(int m)
: val(m) {}

static Month Jan() { return Month(1); }
static Month Feb() { return Month(2); }

static Month Dec() { return Month(12); }

private:
int val;
};

Date d(Month::Mar(), Day(30), Year(1995));

Interface Consistency

The more consistency achieved in an interface
the better.

Things are easier to use if you have consistent
concepts in interfaces.

(brian) Heavy HARP point :)

This concept applies to UIs, processes, code
etc..

Consistency

STL is not perfect

but it is largely consistent

Every STL container has a size() member

InConsistency
Java

Arrays
Length property

Lists
Size() method

Strings
Length() method

C#
Arrays

Length property
ArrayLists

Count property
Strings

Length property

Inconsistency imposes mental friction

The more an interface imposes something the user
has to remember the more it is prone to misuse

(Brian Additions)

Place yourself in the MIND of the user

Get a feel for how "it reads".

Think of the general rules you would use in
English

"read" the usage of the library

Have meaningful English in mind when thinking
about it

(Brian Additions)
This is bad

if (!NotDisabled())

return (!NotDisabled() ? !bState : !(bState | bSecond));

Investment * createInvestment();

What is the problem?
User has to remember to delete it
Clients COULD use a smart pointer
So what's the big deal?

Also Consider:

The Big Deal

Question: "We shouldnt have to make better
interfaces. Shouldn’t people just use it correctly in the
first place?"

Answer: We “shouldnt” but we have to....

We all make mistakes as users of code. (and systems)

As code (or a system) grows in complexity, the amount
of things we have to “remember to do correctly” goes
up exponentially

The Big Deal
The more a mechanism is easy to use correctly and
difficult to misuse, the more the user of the mechanism
can focus on their specific problem.

The better job we can do of disallowing common
mistakes in our interfaces, the more the users of the
interfaces can concentrate on their specific problem.

It it very important to always strive for a strong
interface, which prevents misuse.

Failing to do this, eventually our own sloppiness will
catch up with us.

Consider:

This can be improved by giving the user a
smart pointer back

Investment * createInvestment();

boost::shared_ptr<Investment> createInvestment();

Consider

Advantages:

No leaked memory

shared_ptr also can have a custom deleteor

Internal knowledge about deleting a Investment REMAIN
inside the createInvestment() function & class

Cross DLL problem solved

Deleting memory from a different HEAP causes leaks

shared_ptr<> handles this automatically

boost::shared_ptr<Investment> createInvestment();

Things to Remember:
Good interfaces are easy to use correctly and hard to
use incorrectly. You should strive for these
characteristics in all your interfaces

Ways to facilitate correct use include consistency in
interfaces and behavioral compatibility with built-in
types.

Ways to prevent errors include creating new types,
restricting operations on types, constraining object
values, and eliminating client resource management
responsibilities.

boost\tr1:: shared_ptr<> supports custom deletors. This
prevents the cross-dll problem, it can also be used to
unlock mutexs or other types of RAII style problems.

ITEM#19

Treat class design as type design

Questions to ask during
design:

How should objects of your new type be created and
destroyed?

Influences ctor and dtor design

How should object initialization differ from object
assignment?

Determines behavior of assignment operators

What does it mean for objects of your new type to be
passed by value?

Influences the copy ctor

Questions to ask during
design:

Which restrictions for legal values for your new type?

Effects your handling of invalid values
Class design
Error handling mechanism

Does your new type fit into an inheritance graph?

If you inherit- effects what you can do
If you intend inheritance for use- affects which
functions you provide

Questions to ask during
design:

What kind of type conversions are allowed for
your new type?

Do you allow implicit or explicit conversions?

Both to and from your object

What operators and functions make sense for
your new type?

Questions to ask during
design:

What standard functions should be disallowed?

I.e. copy, assignment etc

Who should have access to the members of
your new type?

public private or protected?

What is the "undeclared interface" of your new
type?

Questions to ask during
design:

What guarantees do you provide in

performance?

exception safety?

resource usage?

These guarantees will impose constraints in
implementation.

Questions to ask during
design:

How general is your new type?

Consider using templates instead of
additional types.

Is a new type really what you need?

Consider adding functionality to an existing
class.

Things to Remember:

Class design is also type design. Before defining
a new type, be sure to consider all the issues
discussed in this item.

ITEM#20

Prefer pass-by-reference-to-const to pass-by-
value.

Prefer pass-by-reference-to-
const to pass-by-value.

What happens when
validateStudent() is called?

six constructors

four copies of strings

six destructors

Can we do better???

struct Person
{
 string name;
 string address;
};

struct Student : Person
{
 string schoolname;
 string schooldaddress;
};

bool validateStudent(Student s);

//////////////// usage
Student plato;
bool isok = Validate(s);

Better:

Effects:

a pointer copy

much more efficient!

Avoids the slicing problem!

(Slicing Problem???)

struct Person
{
 string name;
 string address;
};

struct Student : Person
{
 string schoolname;
 string schooldaddress;
};

bool validateStudent(const Student & s);

Slicing Problem:
Student object is copy-constructed
into a temp Person object

The derived class is effectively
"sliced" off

The virtual now calls
Person::savetodisk()

Not Student::savetodisk()

(Slicing problems can commonly crop
up in exception handlers)

struct Person
{
 string name;
 string address;
 virtual void savetodisk();
};

struct Student : Person
{
 string schoolname;
 string schooldaddress;
 virtual void savetodisk();
};

void SaveObject(Person p)
{
 p.savetodisk();
}

// Usage:

Student s;
/// .. fill in variables in s

SaveObject(s); // save object to disk

Slicing Solution

Person is now passed as
const &

Further derivations of
Student now work as
expected!

struct Person
{
 string name;
 string address;
 virtual void savetodisk() const;
};

struct Student : Person
{
 string schoolname;
 string schooldaddress;
 virtual void savetodisk() const;
};

void SaveObject(const Person & p)
{
 p.savetodisk();
}

// Usage:

Student s;

/// .. fill in variables in s

SaveObject(s); // save object to disk

Things to Remember:
Prefer pass-by-reference-to-const over pass-
by-value.

Typically more efficient and it avoids the
slicing problem.

For built-in types, STL iterators and function
objects (functors), Pass-by-value is usually
appropriate.

(Brian) These objects usually don't have data
members- or their members are small.

End Part 2

Thank You

ITEM#21

Don't try to return a reference when you must
return an object.

Example

Is this code ok?

Problem: Returns a reference to a temporary.

A better approach would be to return an
object:

Rational & operator*(const Rational &lhs, const Rational &rhs)
{
 return Rational(lhs.value * rhs.value):
}

const Rational operator*(const Rational &lhs, const Rational &rhs)
{
 return Rational(lhs.value * rhs.value):
}

Can we do better?.......

Improvements?

We could use a static to reduce the copy

This would increase performance
Does a using a static have any negatives?

Negative: Thread safety!

Conclusion: It’s not worth it

(Note the use of a const return type.
Remember item 3!)

const Rational operator*(const Rational &lhs, const Rational &rhs)
{
 return Rational(lhs.value * rhs.value):
}

Things to Remember:

Never return a pointer or a reference to a local
or stack object, a reference to a heap-allocated
object, or a pointer or reference to a local
static object, if there is a chance that more
than one such object will be needed.

(Item 4 provides an example of a design where
returning a reference to a local static is
reasonable- at least for single threaded only
code.)

ITEM#22

Declare member variables private.

(Brian)
In Effective C++ Scott Meyers makes some
strong arguments for always using get and set
methods. Even for derived classes.

His key reasons for doing this are:

One can change the access or model of the
storage variable later

Easier to debug

Easier to track down misuse & invariant
values

(Brian)
The get \ set idea is an interesting notion

Though I would only apply it when and
where I was LOOKING for the effects of
this Effective C++ item

Also:

One thing that is not mentioned is which
dialect of C++ one is using.

If one is in "C", then it is typical to make
Plain Old Data structures (POD) where the
members are public

Things To remember:

Declare data members as private. It gives
clients syntactically uniform access to data,
affords fine-grained access control, allows
invariants to be enforced, and offers class
authors implementation flexiablity.

ITEM#23

Prefer non-member non-friend functions to
member functions.

“Prefer non-member non-friend
functions to member functions.”
This item is about making functions instead of
member functions.

struct myclass
{
 const string data_stream();
};

void save(myclass & mc)
{
 ofile("saved") f;
 f << mc.data_stream();
}

Using this idiom has some interesting effects....

Non-Member Non-Friend Function
Effects

Smaller classes

Classes are more "to the point"

Saves compile & re-compile time

Allows #including different
packages of methods seperately

Similiar to STL

Algorithms like for_each are
seperate

functions operate on objects

With or without templates,
functions can be more generic

struct myclass
{
 const string data_stream();
};

void save(myclass & mc)
{
 ofile("saved") f;
 f << mc.data_stream();
}

Counter-point
(Brian)

I like this item, however I need to point out that “even
STL” doesn’t always follow it.

There are times when it seems natural\ intutive to
provide methods:

Or is it?.....

(something to further think about) :)

std::vector<int> v;
....
cout << v.size(); Is more clear than:

std::vector<int> v;
....
cout << size(v);

Namespaces

Scott Meyers also suggests placing such
functions in namespaces to reduce clutter.

Things to Remember:

Prefer non-member non-friend functions to
member functions. Doing so increases
encapsulation, packaging flexiablity, and
functional extensibility.

ITEM#24

Declare non-member functions when type
conversions should apply to all parameters.

This item pertains to the situation where one is
making a class which can interoperate with
built in types.

Implicit type conversion

Why doesnt this work?

struct Rational
{

// purposely NOT explict
Rational(int numerator =0, int denom =1);
int numerator() const;
int denom() const;
// ...

const Rational operator*(const Rational& rhs) const;
};

Is “Rational”
interoperable?...

Rational oneEighth(1,8);
Rational oneHalf(1,2);

Rational result = oneHalf *
oneEighth; // OK
result = result * oneEighth; // OK

YES! Except for... result = oneHalf * 2; // OK
result = 2 * oneHalf; // Error!

Implicit type conversion

This works because the ctor is not "explicit"

Allows the compiler to take the "2" and
promote & convert it to a Rational type

Parameters are only eligable for implict type
conversion ONLY if they are listed in the
parameter list.

result = oneHalf.operator*(2); // OK
result = 2.operator*(oneHalf); // Error!

Implicit type conversion

result = oneHalf * 2; // OK

think of it as the actual function calls:

Think of it this way:

That operator member function "says":

"This is the member for applying the "*"
operator to me from another type"

The constructor "says":

"I can be implictly converted from an int"

struct Rational
{
 Rational(int numerator =0, int denom =1); // purposely NOT explict
 int numerator() const;
 int denom() const;
 ...

 const Rational operator*(const Rational& rhs) const;
};

"explicit"

If the constructor was "explicit", the
parameter type would have to exactly match.

This allows an integral constant, like "12", to be
passed into the constructor expecting an "int"

This is because a integral constant "12" is
convertable to "int"

Without "explicit", one would have to only pass
"int" types

How to support mixed
mode operators properly:

The operator must be defined as a non-member
function:

struct Rational
{
...

};

const Rational operator*(const Rational& lhs, const Rational& rhs)
{
return Rational(lhs.numerator() * rhs.numberator(),
 lhs.denom() * rhs.denom());
}

Rational oneFourth(1,4);
Rational result;

result = oneFourth * 2; // OK
result = 2 * oneFourth; // NOW it works!

Now conversions work in mixed mode:

Things to remember:

If you need type converstions on all
parameters to a function (including the one
pointed to by the this pointer), the function
must be a non-member.

Item#25

Consider support for a non-throwing swap.

Swap

swap() was originally introduced as a part of
STL.

Is used by STL for swapping values in
containers

i.e. std::sort<>

Has become a key piece of exception safe
programming.

Typical stl swap:
As long as the types support
copying, default swap
works.!!

namespace std
{
 template <typename T>
 void swap(T& a, T& b)
 {
 T temp(a);
 a = b;
 b = temp;
 }

};

struct impl;

class Pimpl
{
 impl * pImplementation;
 public:
 void operator=(const Pimpl & rpimpl)
 {
 // DEEP copy of pimpl
 }
};

The STL Swap then becomes a very inefficient
mechanism.

It would be much more efficient to swap the
pImplementation pointers.

What about with:

Swap Your Own Types
IF your swap implementation
requires private access to
member variables make it a
member function.

If not, make it a non-member
function.

In either case, provide a swap
function in your namespace.

In the case of Pimpl, we must
do both

struct impl;

class Pimpl
{
 impl * pImplementation;
 public:
 void operator=(const Pimpl & rpimpl)
 {
 // DEEP copy of pimpl
 }
 void swap(Pimpl& rPimpl) // member- due to need

{ // to access private data
 impl * pImplTmp(pImplementation);
 pImplementation = rPimpl.pImplementation;
 rPimpl.pImplementation = pImplTmp;
 }
};

// swap function for STL to find
void swap(Pimpl & lPimpl, Pimpl & rPimpl)
{
 lPimpl.swap(rPimpl);
}

How does STL find my
swap?

Koenig \ Argument Dependant Lookup!

(ADL)

When compilers see the call to swap, they
search for the proper one.

C++'s name lookup rules ensure that whatever
namespace is used for the type Pimpl, will be
the first place it looks to find the associated
swap function.

Things to Remember:
Provide a swap member function when
std::swap would be inefficient.

Make sure your swap is exception safe.

If you offer a member swap, also offer a non-
member swap that calls the member.

Never call std::swap on a type, employ a using
namespace std, then call swap in it's bare form.

(allows ADL to kick in)

It is fine to totally specialize std templates for
user-defined types, but never try to add
something completely new to std.

Item#26

Postpone variable definitions as long as possible.

Brian’s Summary
In a nutshell, limit the scope of the
variables to where it is needed

Heap related objects should be close
to the usage of them.

Their scope should be contained to
where you need them

Note: y is not heap allocated unless it
is ACTUALY needed

void func()
{
 int x;
 if (x == 10)
 {
 // do something with x
 return;
 }
 int y(x); // x is unknown - but NOT 10

// do something with y
}

Also:

Scott suggests that variables inside loops are
better for readability.

Though not as efficient

He suggests you consider the readability
argument strongly against the performance
argument

Things To Remember:

Postpone variable definitions as long as
possible. It increases program clarity and
improves efficiency.

Item #27

Minimize Casting

Casting in STL:
const_cast<T>(expression)

Used to cast away constness. Only C++ style
cast that can do this.

dynamic_cast<T>(expression)

Uses RTTI to safely downcast a type

reinterpret_cast<T>(expression)

low level casts that yeild implementation-
dependant (unportable) results

i.e. casting a pointer to an int

rarely used outside of low level code

Casting in STL
static_cast<T>(expression)

explicit conversions
non-const to const object (Item #3)
int to double etc..
Also used to to perform reverse
void * to typed pointer
pointer to base
pointer to derived
cannot cast from const to non-const objects

Old style casts continue to be legal.
New forms are preferred.
New forms have better compile time error checking support

Things to Remember:

Avoid casts whenever possible, especially
dynamic_casts in performance-sensitive code. If
a design requires casting, try to develop a cast
free alternative.

When casting is neccessary, try to hide it
inside a function. Clients can then call the
function instead of putting casts in their code.

Prefer C++ style casts to the old C style casts.
Easier to see and are more specific about what
they do.

Item #28

Avoid returning "handles" to object internals.

Avoid returning "handles"
to object internals.

While it maybe faster to return a pointer to
internal private data at times. Prefer not to do
this.

Sometimes you have to

a smart pointer class usually has to return the
raw pointer with an explict member

a window class might need to return a handle
for an API call

Only do this if you "have to".

Things to Remember:

Avoid returning handles (references, pointers,
or iterators) to object internals. It increases
encapsulation, helps const member functions act
const and minimizes the creation of dangling
handles.

Item#29

Strive for exception safe code.

Consider:

How exception safe is this code?

From an exception safety perspective this is as
bad as it gets.

There are 2 requirments for exception safety
and this code satisfies neither.

struct PrettyMenu
{
 void changeBkgrnd(istream & imgSrc); // change image background
 // ...

private:
 Mutex mutex; // mutex
 Image * bgImage; // current background
 int ImageChanges; // number of times changed
};

void PrettyMenu::changeBkgrnd(istream & imgSrc)
{
 lock(&mutex); // acqure mutex

 delete bgImage; // get rid of old background
 ++ ImageChanges; // update count
 bgImage = new Image(imgSrc); // install new background

 unlock(&mutex); // release mutex
}

Exception Safety
Requirements

When an Exception is thrown, exception safe functions:

Leak no resources.

Do not allow data structures to become corrupted.

Addressing the resource leak is easy.

Item #13- Use objects to manage resources.

Item #14- (in the Book) introduces the lock class

Improved code:

What do you think about above?

Resource leaking is now gone, structure
corruption is still there.

void PrettyMenu::changeBkgrnd(istream & imgSrc)
{
 Lock ml(&mutex); // acqure mutex in an object

 delete bgImage; // get rid of old background

 ++ ImageChanges; // update count
 bgImage = new Image(imgSrc); // install new background

}

"Abrahams guarantees"
The Abrahams Guarantees are a set of contractual
guidelines that class library implementors and clients use
when reasoning about exception safety in C++ programs.

The BASIC guarantee: that the invariants of the
component are preserved, and no resources are leaked.

The STRONG guarantee: that the operation has either
completed successfully or thrown an exception, leaving
the program state exactly as it was before the operation
started.

The NO-THROW guarantee: that the operation will not
throw an exception.

“Abrahams Gaurantees”

The guarantees are named for David Abrahams,
the member of the C++ Standard committee
who formalized the guidelines

Basic Gaurantee
No resources leaked

All objects are internally consistent

However the exact state of the program may
not be predictable

void PrettyMenu::changeBkgrnd(istream & imgSrc)
{
 Lock ml(&mutex); // acqure mutex in an object

 delete bgImage; // get rid of old background

 ++ ImageChanges; // update count
 bgImage = new Image(imgSrc); // install new background

}

In the example code, if a
exception were thrown,
which background image
do we have?

(unpredicable)

Strong Guarantee

Promises that if an exception is thrown, the
state of the program is unchanged.

calls to such functions are considered "atomic"

They either completely succeed or completely
fail

No-throw Guarantee
These functions promise to never throw

All operations on built in types (int, pointers,
char) are no-throw

Exception safe code must offer one of the
three guarantees above.

if it doesn't it isnt exception safe

The choice is to determine which gaurantee to
offer for the functions you write.

Better code:
Does this satisfy the
Strong Guarantee?

What problems do we
still have?

Image constructor

if it throws, it is possible
that the read marker
for imgSrc has been
moved!

(lets set that aside and
assume the istream copy
ctor CAN offer a strong
gaurantee)

struct PrettyMenu
{
 // ...
 boost::shared_ptr<Image> bgImage;
};

void PrettyMenu::changeBkgrnd(istream & imgSrc)
{
 Lock ml(&mutex);

 bgImage.reset(new Image(imgSrc)); // replace internal ptr
 // with result of new
 ++ imageChanges;
}

If image ctor has strong
gaurantee & reset uses
“swap” this code is then

“Strong”

Point:

Consider the functions you call and what their
guarantee(s) are.

A function can usually offer a guarantee no
stronger than the weakest guarantee of the
function(s) it calls.

There is a general design strategy that
typically leads to a strong guarantee.

"copy and swap" Design
strategy

make a copy of the object you wish to modify

make all needed changes to the object

if any operations throw, original is unchanged

Finally, swap the modified object with the
original in a non-throwing opertation

usually implemented as a PIMPL

Example
Positives vs Negatives of
example?

Offers strong guarantee

Is more difficult to code

Is less efficient

Such is the tradeoff
between basic vs strong
guarantee.

struct Pimpl
{
 boost::shared_ptr<Image> bgImage;
 int imageChanges;
};

class PrettyMenu
{
 // ...
 Mutex mutex;
 boost::shared_ptr<Pimpl> pImpl;
};

void PrettyMenu::changeBackground(istream & imgSrc)
{
 using std::swap; // see item #25
 Lock ml(&mutex);
 boost::shared_ptr<Pimpl> pNew(new Pimpl(*pImpl));

 // modify the copy
 pNew->bgImage.reset(new Image(imgSrx));
 ++ pNew->imageChanges;

 // swap the new data in place
 swap(pImpl, pNew);
}

Things to Remember:

Exception Safe functions leak no resources and
allow no data structures to become corrupted,
even when exceptions are thrown. Such
functions offer the basic, strong, or nothrow
guarantees.

The strong guarantee can often be implemented
via copy-and-swap, but the strong guarantee is
not practical for all functions.

A function can usually offer a guarantee no
stronger than the weakest guarantee of the
function(s) it calls.

Item#30

Understand the ins and outs of inlining.

Points:
"inline" is a request to a compiler. It may or may not
inline it in reality.

Inlining creates bigger executables.

Inlining saves jmp instructions, allowing tight code to run
faster.

Library headers which, from verstion to version, have
functions which go from inline to non-inline (and vice
versa) can create problems for users.

Depending on the compiler, templates may or may not be
inlined.

Template instantiation and inlining are *NOT* the same
thing

Things to Remember:

Limit most in-lining to small, frequently called
functions. This facilitates debugging and binary
upgradeability, minimizes potential code bloat
and maximizes the changes of greater program
speed.

Don't declare function templates inline just
because they appear in header files.

End Part 3

Thank You

Item#31

Minimize compilation dependencies between
files.

In a nutshell:

If you have a class in a header which relies
upon lower level types, put those in a separate
header.

Put interface classes & declarations in a
separate file form the implementation.

Example

Date is now not in the same header as person

date.h only has the declaration , not the definition.

A Pimpl class (or Handle class) can also reduce compile
dependencies

An interface class can serve the same purpose

Both Pimpl and Interface classes incur some runtime
overhead due to virtual function dereferencing

#include <date.h> // header file DECLARING not defining date
 // Impl would then be in ANOTHER header
class Person
{
 Person(Date & birth);
};

class Date;
class Person
{
 Person(Date & birth);
};

class Date
{

//...
}

Instead of This Do This

Things to Remember:

The general idea behind minimizing compilation
dependencies is to depend on declarations
instead of definitions. Two approaches based on
this idea are Handles classes and Interface
classes.

Library header files should exist in full and
declaration only forms. This applies whether or
not templates are involved.

Item#32

“Make sure public inheritance models "is-a".”

Make sure public
inheritance models "is-a"
If you only remember one thing from this book,
remember the most important rule in object
orientated programming in C++

"Public inheritance means "is-a" "

Commit this to memory.

Point:

Everything that applies to base classes must
also apply to derived classes, because every
derived class object IS A base class object.

I.e. if you have an class called "animal", and
you place a "fly()" method in it , you are
violating this principle.

Things to Remember:

Public inheritance means "is-a". Everything that
applies to base classes must also apply to
derived classes, because every derived class
object is a base class object.

Item#33

Avoid hiding inherited names.

Consider:
struct Base
{
 virtual void mf1() = 0;
 virtual void mf1(int);

 virtual void mf2();

 void mf3();
 void mf3(double d);
};

struct Derived : Base
{
 virtual void mf1();
 void mf3();
 void mf4();
};

Derived d;
int x;

d.mf1(); // OK calls Derived::mf1()
d.mf1(x); // error! Derived::mf1 hides Base::mf1

d.mf2(); // OK calls Base::mf2()
d.mf3(x); // error! Derived::mf3 hides Base::mf3

Why does C++ work this
way?

Prevents you from accidentally inheriting overloads
from distant base classes when you create a new
derived class

Unfortunately, one typically WANTS to inherit the
overloads

If you are using public inheritance and do not inherit
the overloads, you're violating the is-a relationship
between base and derived.

“using declarations” can be used to speak to this
problem:

“Using” Declarations

The using declaration
brings in everything with
that "name".

If you only wish to inherit
the Base::mf3(double)
function you must:

delete the "using
Base::mf3()"

provide a forwarding
function

struct Base
{
 virtual void mf1() = 0;
 virtual void mf1(int);

 virtual void mf2();

 void mf3();
 void mf3(double d);
};

struct Derived : Base
{
 using Base::mf1(); // make all mf1 & mf3

 // things in base
 using Base::mf3(); // visible (& public)

 // in deriver's scope

 virtual void mf1();
 void mf3();
 void mf4();
};

Derived d.
int x;

d.mf1(); // Derived::mf1
d.mf1(x); // Base::mf1
d.mf2(); // Base::mf2
d.mf3(); // Derived::mf3
d.mf3(x); // Base::mf3

Things to Remember:

Names in derived classes hide names in base
classes. Under public inheritance, this is never
desirable.

To make hidden names visible again, employ
using declarations or forwarding functions

Item#34

Differentiate between inheritance of interface
and inheritance of implementation.

Notes:

Alot of discussion in the book on this point.

Many pages are spent examining virtual vs pure
virtual functions and the conceptual design
implications of each

The "things to remember" seems to summarize
this well.

Things to Remember:
Inheritance of interface is different from inheritance
of implementation. Under public inheritance, derived
classes always inherit base class interfaces.

Pure virtual functions specify inheritance of interface
only.

Simple (impure) virtual functions specify inheritance
of interface plus inheritance of a default
implementation.

Non-Virtual functions specify inheritance of interface
plus inheritance of mandatory implementation.

Item#35

Consider alternatives to virtual functions

Example
User code, derives from
GameCharacter and either uses
supplied healthValue method or
supplies it's own

healthValue is not pure virtual

Suggests there is a default
algorithm

Pretty common model of design

that is also a weakness

design is obvious- may not give
proper consideration to
alternatives

There are other ways of solving
the same problem

struct GameCharacter
{
// return character's health value
// derived classes may redefine
virtual int healthValue() const;
};

Template Method Pattern via
Non-Virtual Interface Idiom

This school of thinking argues

virtual functions should almost always be private

a better design would have healthValue as a public
member

make it non-virtual

have it call private virtual function to do the real work

Basic design:

Have clients call private
virtual functions indirectly
through public non-virtual
member functions

known as "Non-Virtual
Interface" idiom (NVI Idiom)

Advantages:

The "before" and "after"
code is a key advantage

Intelligent resource handling
is possible

Better control over internal
state of object

struct GameCharacter
{
 // return character's health value
 // derived classes DO NOT redefine
 int healthValue() const
 {
 //... "before" stuff
 int retVal = doHealthValue(); // real work
 //... "after" stuff
}

private:
 // derived classes may redefine this
 virtual int dohealthValue() const
 {
 // default algorithm
 }
};

Example

Weirdness
NVI involves derived
classes redefining private
virtual functions
Functions they can't call!!!
"I meant to do that!" -
Pee Wee Herman

The base class controls when
the replaceable function
gets called
Positive:

Allows for strong isolation

struct GameCharacter
{
 // return character's health value
 // derived classes DO NOT redefine
 int healthValue() const
 {
 //... "before" stuff
 int retVal = doHealthValue(); // real work
 //... "after" stuff
}

private:
 // derived classes may redefine this
 virtual int dohealthValue() const
 {
 // default algorithm
 }
};

Example

Another way: Strategy
Pattern via Function Pointers

This is a common implementation of the
Strategy design pattern.

// function for default health calc
int defaultHealthCalc(const GameCharacter & gc);

struct GameCharacter
{
 typedef int (*HealthCalcFunc)(const GameCharacter&);
 explicit GameCharacter(HealthCalcFunc hcf= defaultHealthCalc)
 : healthFunc(hcf){}

 int healthValue() const
 { return healthFunc(*this); }

 // ...
private:
 HealthCalcFunc healthFunc;
};

Interesting flexibility
Different instances of the same character type can
have different health

EvilCharacter might derive from GameCharacter

Multiple EvilCharacters can be instantiated

All with different algorithms for calculating health

This also allows for the algorithm to CHANGE at
runtime

Could there be negatives???......

On the other hand:
health calculation is no longer a member function

no special access to internals of GameCharacter

syntax is not pretty

health calculation MUST be a function

cannot be a functor or something that looks like a
function

health calculation function must return an int

not something convertible to an int

This leaves us wondering if there is a better way?......

Strategy Pattern via boost::function
short calcHealth(const GameCharacter & gc);

struct GameCharacter
{
 typedef boost::function<int (const
GameCharacter&)> HealthCalcFunc

 explicit
GameCharacter(HealthCalcFunc hcf=
defaultHealthCalc)

 : healthFunc(hcf) {}

 int healthValue() const
 { return healthFunc(*this); }

 // ...
 private:
 HealthCalcFunc healthFunc;
};

// NOTE: boost::function is a
// generalized function pointer.
struct HealthCalculator {
 int operator()(const GameCharacter &)
const
{ ...}
};

struct GameLevel {
 float health(const GameCharacter &)
const
{ ...}
};

struct EvilBadGuy : GameCharacter
{ .. };

struct EyeCandyCharacter : GameCharacter
{ .. };

// Usage:
EvilBadGuy ebg1(calcHealth); // using a function

EyeCandyCharacter ecc1(HealthCalculator()); // function object

GameLevel currLevel;

EvilBadGuy ebg2(boost::bind(&GameLevel::Health, currentLevel, _1));

Boost::function

The constraints with function pointers disappear
if we use boost::function

boost::function is a tr1 library which is
essentially a "better" function pointer

Boost::Function Notes:

it is convertible to the function pointer type

can receive the results of a bind expression

can also take a function object (functor)

Now the syntax is much better

More flexibility in how we pass in a Health
Calculation

Things To Remember:
Alternatives to virtual functions include the
NVI idiom and various forms of the Strategy
design pattern.

A disadvantage of moving functionality from a
member function to a function outside the class
is that the non-member function lacks access
to the class's non-public members

boost::function objects act like a generalized
function pointers. Such objects support all
callable entities compatible with a given target
signature.

Item#36

Never redefine an inherited non-virtual
function.

Consider:

Nothing unexpected here...

struct B
{
 void mf();
};

struct D : B {...};

D x;

B * pB = &x;
pB->mf();

D* pD = &x;
pD->mf();

Now consider:
non-virtual functions are statically
bound to the pointer or reference
type

virtual functions (on the other
hand) are dynamically bound

This can lead to many confusing
situations when trying to read
code.

“Don't do it.”

struct B
{
 void mf();
};

struct D : B
{
 void mf(); // hides B::mf()
};

D x;

B * pB = &x;
pB->mf(); // calls B::mf()

D* pD = &x;
pD->mf(); // calls D::mf() - Clint Eastwood

Things to Remember

Never redefine a inherited non-virtual function

Item#37

Never redefine a function's inherited default
parameter value.

Consider:
Virtual functions are
dynamically bound.

The default arguments to
the dynamically bound
call are STATICALLY
bound.

Leaves us wondering
WHY C++ does this...

(well doesn’t it?)

Would you like the next
slide now?

Sure?

Ok...

struct Shape
{
 enum ShapeColor {Red, Green Blue};

 virtual void Draw(ShapeColor = Red) const =0;
};

struct Rectangle : Shape
{
 virtual void Draw(ShapeColor = Green) const;
};

Rectangle R;
Rectangle * pR = &R;
Shape * pS = &R;

pR->Draw(); // Green is used as the default
pS->Draw(); // Red is used as the default

Why does C++ do this?

Performance

If the arguments were dynamically bound, this
would mean a runtime check

Things to Remember

Never redefine an inherited default parameter
value, because default parameter values are
statically bound, while virtual functions- the
only functions you should be overriding- are
dynamically bound.

Item #38

Model "has-a" or "is-implemented-in-terms-of"
through composition.

Example

Person demonstrates "has-a"

Composition means either "has-a" or "is-
implemented-in-terms-of"

Which definition for composition depends on
which domain used....

struct Address { ... };
struct PhoneNumber { ... };
struct Person
{
 // ...
 std::string name;
 Address address;
 PhoneNumber voiceNumber;
 PhoneNumber faxNumber;
};

Application Domain

Person is using embedded objects to model a real
world scenario

Person, with it's objects, is defined more as a "model"
of the domain

Person implements "has-a" composition

Implementation Domain

One might have other member variables

Buffers, counters, mutex

generally these are implementation details used as
member variables

A class like this would implement "is-implemented-
in-terms-of" composition

Basic Point of this item
Do not use inheritance with "is-implemented-in-
terms-of" composition

this confuses the notion of inheritance "is-a" with
"is-implemented-in-terms-of" composition

It maybe seductive to simply derive from some
base class which already has the buffer, counters
and mutxes and use those variables directly in the
derived class.

Scott Meyers considers this a bad practice and
should be avoided.

Instead..
Instead, to implement "is-implemented-in-terms-of"
composition one should

Use a member variable for the "in-terms-of" object

Implement forwarding functions to the member variable
object

Gets around hidden gotchas with accidentally inheriting
things you did not intend

Idea that something is "implemented-in-terms-of" is an
implementation detail

Code should not use inheritance, because that works against
the "hidden" aspect

Leaves open accidental or unexpected functionality

Things to Remember

Composition has meanings completely different
from that of public inheritance.

In the application domain, composition means
"has-a". In the implementation domain, it means
"is-implemented-in-terms-of".

Item#39

Use private inheritance judiciously.

Consider:

Clearly private inheritance doesn't mean "is-a"

What does it mean?

struct Person { ... };

struct Student : private Person
{ ...};

2 Rules of private
inheritance

Compilers will generally not convert a derived
class object (like student) into a base class
object (Person) if the inheritance is private.

Members inherited from a private class become
private members of the derived class, even if
they were protected or public in the base class.

What private inheritance
means:

"is-implemented-in-terms-of"

Private inheritance is purely an
implementation technique

means nothing during software design, only
during software implementation

Item 38 points out that composition can be
used to implement "is-implemented-in-terms-of"

so can private inheritance

How does one choose
between the two?

Use composition whenever you can

Use private inheritance when you must

When must you use Private
inheritance?

when protected members and\or virtual
functions enter the picture

space concerns (Empty Base Optimization (EBO))

Example:

Lets say we want to have a class that tracks how many
times a member in Widget is called

However, this means that Widget must derive from Timer.

Public inheritance is inappropriate in this case

It is not true that Widget "is-a" Timer

Widget clients should NOT know about Timer

Not a part of the conceptual interface

This also has the artifact of allowing Widget clients to
call functions in Timer directly

NOT GOOD!

struct Timer
{
 explicit Timer(int tick);
 virtual void OnTick() const;
};

So we inherit privately:
Due to private inheritance,
Timer's public OnTick function
becomes private in Widget

This is nice but not
necessary...

struct Timer
{
 explicit Timer(int tick);
 virtual void OnTick() const;
};

struct Widget : private Timer
{
 private:
 virtual void OnTick() const;
};

If we used composition
instead:

Design is more complicated

However, derived classes are not
permitted to override OnTick()

which maybe crucial to your
design

Allows for similar functionality
to Java's "final" functionality

i.e. disallow derived classes
from redefining methods

struct Widget
{
private:
 struct WidgetTimer : public Timer
 {
 virtual void onTick() const;
 // ..
 };
 WidgetTimer timer;
public:
 // ...
};

Empty Base Optimization
(EBO)

Classes may qualify for EBO if they are without

Data

Non-static data members

Virtual functions! ! ! !

Virtual base classes

Conceptually, these type of classes should use
no space!

EBO
On many compilers:

 sizeof(HoldsAnInt) > sizeof(int)

With most compilers sizeof(Empty) is 1

many compilers will silently add a "char" into
storage space of empty so that empty meets
the C++ standard requirements

Alignment requirements may cause compilers to
add padding to classes like HoldsAnInt

it is likely that HoldsAnInt would enlarge
enough to hold a char + an int

(Scott Meyers said he tested many compilers
and found this to be the case)

struct Empty {};

struct HoldsAnInt
{
private:
 int x;
 Empty e;
};

EBO

C++ standard dictates that "freestanding
objects" mustn't have zero size

Constraint doesn't apply to base class parts of
derived class objects

because they are not freestanding

EBO

If you inherit from empty instead of containing
an object of that type you are likely to find
(compiler dependent) that

sizeof(HoldsAnInt) == sizeof(int)

This is known as the Empty Base Optimization
(EBO)

Scott Tested many compilers and found they all
supported EBO

he does not list however, the compilers

struct Empty {};
struct HoldsAnInt : private Empty
{
private:
 int x;
};

(Brian)

 In meta-programming MOST classes are empty

This is a key element of why meta-programs are faster at
runtime

You might pull together 30 objects to generate some code,
but they are all "empty"

hence what is left is the code that was generated

(now back to Effective C++....)

STL & EBO

STL has many "empty" classes, though in
practice most classes are not empty

it is then rarely a justification for private
inheritance

most inheritance corresponds to "is-a"

that's a job for public inheritance, not private

Private Inheritance

Private inheritance is most likely to be a legitimate design
strategy when you're dealing with two classes not related
by "is-a" where one either needs access to the protected
members of another or needs to redefine one or more of
it's virtual functions.

Even in this case, a mixture of public inheritance and
containment can often yield the behavior you want

albeit with greater design complexity

Private Inheritance

using Private inheritance judiciously means
employing it when, having considered all the
alternatives, its the best way to express the
relationship between two classes in your
software

Things to Remember:

Private inheritance means is-implemented-in-
terms-of. It's usually inferior to composition,
but it makes sense when a derived class needs
access to protected base class members or
needs to redefine inherited virtual functions.

Unlike composition, private inheritance can
enable the empty base optimization. This can be
important for library writers who strive to
minimize object sizes.

Item#40

Use multiple Inheritance judiciously.

“Use multiple Inheritance
judiciously”

In the community multiple Inheritance (MI)
usage breaks into two camps:

Believe if Single Inheritance (SI) is good, MI
must be better

Single Inheritance is good, MI is not worth the
trouble

Consider:
checkOut() is ambiguous even
though only one of the two
functions is accessible

C++ rules for resolving calls to
overloaded functions:

before seeing whether a
function is accessible, C++ first
identifies the function that's
the best match

Only then does C++ check for
accessibility

To resolve this you must:

mp.BorrowableItem::checkOut();

struct BorrowableItem
{
 void checkOut();
 // ...
};

struct ElectronicGadget
{
private:
 void checkOut();
// ...
};

struct MP3Player :
public BorrowableItem,
public ElectronicGadget
{
 // ...
};

MP3Player mp;

// ambiguous! Which checkOut()???
mp.checkOut();

Multiple Inheritance

Multiple Inheritance just means inheriting from
more than one base class

It is not uncommon for MI to be found in
hierarchies that have higher level base classes
too

Consider:

Data Members?

where does std::filename go???

Put it in File, but what does this mean for IOFile?

it now has "two" filenames

class File { ... };
class InputFile : public File {...};
class OutputFile : public File {...};
class IOFile :
public InputFile, public OutputFile
{ ... };

Virtual Inheritance

Virtual Inheritance can solve this problem:

Note this example is almost directly taken from
std streams.

class File { ... };
class InputFile : virtual public File {...};
class OutputFile : virtual public File {...};
class IOFile :
public InputFile, public OutputFile
{ ... };

class basic_ios { ... };
class basic_istream : virtual public basic_ios
{...};
class basic_ostream : virtual public basic_ios
{...};
class basic_iostream :
public basic_istream, public basic_ostream
{ ... };

Virtual Inheritance
Negatives

Larger objects

access to variables in base classes can be
slower

(both of these are compiler dependant)

Other costs

rules governing initialization of virtual base
classes are more complicated

responsibility for initializing a virtual base is
borne by the most derived class

Implications of costs:

classes derived from virtual bases that require
initialization must be aware of their virtual
bases, no matter how distant

when a new derived class is added to the
hierarchy, it must assume initialization
responsibilities for it's virtual bases

Virtual inheritance Advice

Don't use it unless you need to

by default use non-virtual inheritance

If you must, then try to avoid putting data in
the classes

removes the weirdness about initialization

the same weirdness also comes into play with
assignment

Interesting Note

It is interesting to note that Interfaces in Java
and .Net which are comparable to virtual
inheritance, are not allowed to contain data.

Is there value in MI?

Brian Notes:

I suggest you read Item#40 from the book.

I do not like his example for how MI is
valuable.

I believe the concept is well founded, but the
example is difficult to see his point.

MI

Basically, his example boils down to this:

When you have a class that needs to both
implement an interface AND "is-implemented-in-
terms-of" at the same time, MI is very handy.

Brian Example

I believe this shows a
value in MI for large
code-bases

This is semi-
contractdictory to
“Effective C++”
thinking

// [Implementation Framework Code]
struct Timer { ...}; // For recording how many
times member called
struct Debugable { ... }; // for allowing extra
debugging
struct Loggable { ... }; // for logging to a file

struct TrackableObject : private Timer, private
Debugable, private Loggable
{ };

struct DatabaseCon : private TrackableObject
{...};
struct Grid : private TrackableObject {...};

// [App code]

struct Person : private TrackableObject {...};
struct Place : private TrackableObject {...};

Brian’s point?
In the Implementation Framework layer, one may have
several dimensions of "is-implemented-in-terms-of"
Being able to compose\combine "implementation" from other
implementations is valuable
Both inside the Framework layer itself
And inside the app code
Having a "core" place to go to affect functionality across
the system is key to being able to control large code-bases
sans this design ability, as time goes on, the code becomes
more cluttered and unwieldy
None of this is easily possible without MI
The only alternative is LOTS of forwarding functions
The MI issues due crop up in this scenario, however
typically this is done with unrelated "is-implemented-in-
terms-of" concepts

Things to Remember:
Multiple inheritance is more complex than single
inheritance. It can lead to new ambiguity issues and to
the need for virtual inheritance.

Virtual inheritance imposes costs in size, speed, and
complexity of initialization and assignment. It's most
practical when virtual base classes have no data.

Multiple Inheritance does have legitimate uses. One
scenario involves combining public inheritance from an
interface class with private inheritance from a class that
helps with implementation.

END PART 4

THANK YOU

